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ABSTRACT

We show how precision lensing measurements can be obtained through the lensing
magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic
magnification measurements have been seriously complicated by galaxy clustering.
With precise redshifts obtained from 21cm emission line wavelength, one can correlate
galaxies at different source planes, or exclude close pairs to eliminate such contami-
nations.

We provide forecasts for future surveys, specifically the SKA and CLAR. SKA
can achieve percent precision on the dark matter power spectrum and the galaxy
dark matter cross correlation power spectrum, while CLAR can measure an accu-
rate cross correlation power spectrum. The neutral hydrogen fraction was most likely
significantly higher at high redshifts, which improves the number of observed galax-
ies significantly, such that also CLAR can measure the dark matter lensing power
spectrum. SKA can also allow precise measurement of lensing bispectrum.

Key words: Cosmology: large-scale structure of Universe–radio lines: galaxies–
galaxies: abundance

1 INTRODUCTION

Gravitational lensing measures the distortion of light by
gravity originating from inhomogeneous distribution of mat-
ter. The physics of weak gravitational lensing is clean, per-
haps comparable to the primary CMB. To the first or-
der approximation, it involves only general relativity and
collision-less dark matter dynamics. Gas physics only enters
at small scales (Zhan & Knox 2004; White 2004) and can
be nulled by throwing away small scale (high multipole l or
high wave-vector k) lensing information (Huterer & White
2005). Though the prediction of weak lensing statistics is
complicated by nonlinear evolution of matter density fluc-
tuation, high resolution, large box size N-body simulations
with ray-tracing method are able to measure these statis-
tics to high accuracy (e.g. Vale & White (2003); Merz et al.
(2005)). Thus, weak gravitational lensing is one of the most
powerful and robust tools to constrain cosmology and study
the large scale structure of the universe.

Gravitational lensing causes coherent distortion of
galaxy shape (cosmic shear). In the last several years, many
groups have reported successful detections of cosmic shear
2-point statistics such as power spectrum and variance in

⋆ E-mail:zhangpj@fnal.gov
† E-mail:pen@cita.utoronto.ca

various optical surveys (Bacon et al. 2000; Kaiser et al.
2000; van Waerbeke et al. 2000; Wittman et al. 2000;
Maoli et al. 2001; Rhodes et al. 2001; van Waerbeke et al.
2001; Hoekstra et al. 2002a,b; Refregier et al. 2002;
Bacon et al. 2003; Brown et al. 2003; Hamana et al. 2003;
Jarvis et al. 2003). Lensing systematics can be quantified
by the E-B decomposition (Kaiser 1992; Stebbins 1996;
Crittenden et al. 2002; Pen et al. 2002) and has been shown
to be under control. Higher order statistics such as cosmic
shear convergence skewness has also been robustly detected
(Bernardeau et al. 2002; Pen et al. 2003a; Jarvis et al.
2004). Cosmic shear has also been detected in radio surveys
(Chang & Refregier 2004) and in galaxy-galaxy lensing
(Hirata et al. 2004; Sheldon et al. 2004).

Ongoing and upcoming large scale galaxy surveys such
as CFHTLS1, DES2, LSST3, Pan-STARRS4 and SNAP5

will bring the cosmic shear measurement into the preci-
sion era. At that stage, the ultimate accuracy of cosmic
shear measurement will be determined by our understand-
ing of systematics such as point spread function, galaxy

1 http://www.cfht.hawaii.edu/Science/CFHLS/
2 http://www.darkenergysurvey.org/
3 http://www.lsst.org/
4 http://pan-starrs.ifa.hawaii.edu/public/science/
5 http://snap.lbl.gov/
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intrinsic alignment, seeing and extinction (Hoekstra 2004;
Jarvis et al. 2004; Vale et al. 2004; van Waerbeke et al.
2004). Furthermore, to predict cosmic shear statistics,
galaxy redshift distribution is required as input and has to
be measured robustly. Galaxy photometric redshift suffers
non-negligible statistical and systematic errors. This weak-
ens the robustness of theoretical prediction and thus limits
power of cosmic shear to constrain cosmology.

Besides distorting galaxy images, gravitational lensing
also changes the background galaxy number density. This
effect is two-fold. It increases (decreases) the area of a given
patch on the sky and thus tends to decrease (increase) galaxy
number density. On the other hand, it increases (decreases)
galaxy flux. Since galaxy surveys are flux limited, this results
in more (less) observed galaxies in a given patch of the sky.
The combined effect is either enhancement or suppression of
observed galaxy density, depending on the slope of galaxy lu-
minosity function at the observation flux limit. This magnifi-
cation effect is called cosmic magnification. It introduces ex-
tra correlations in galaxy clustering (Kaiser 1992; Villumsen
1996; Moessner et al. 1998; Jain et al. 2003) and correlates
galaxies (quasars) at different redshifts otherwise should be
uncorrelated (Moessner & Jain 1998). Cosmic magnification
contains as much information of cosmology and matter clus-
tering as cosmic shear.

The measurement of cosmic magnification does not
require the accurate determination of galaxy shapes
and is thus free of many systematics, such as point
spread function and galaxy intrinsic alignment, entan-
gled in the cosmic shear measurement. Cosmic mag-
nification has been measured in quasar-galaxy lens-
ing (Tyson 1986; Fugmann 1988, 1990; Hintzen et al.
1991; Thomas et al. 1995; Bartelmann & Schneider 1993,
1994; Benitez & Martinez-Gonzlez 1995; Benitez et al.
1997; Bartsch et al. 1997; Norman & Impey 1999, 2001;
Ménard & Péroux 2003; Myers et al. 2003; Scranton et al.
2005). Though early detections are often controversial, re-
cent detection byScranton et al. (2005) shows clear depen-
dence of signal on the shape of quasar luminosity function,
as expected to be an unique signature of the cosmic magni-
fication signal.

But the measurement of cosmic magnification suffers
from several obstacles. (1) It suffers stronger shot noise than
cosmic shear measurement. For cosmic shear, shot noise
comes from the intrinsic ellipticity of galaxies, which has
dispersion 〈ǫ2〉1/2 ≃ 0.3. The shot noise power spectrum
is proportional to 〈ǫ2〉/Ng ∼ 0.1/Ng , where Ng is the to-
tal number of galaxies. For cosmic magnification, shot noise
comes from the Poisson fluctuation of galaxy counts and
the shot noise power spectrum scales as 1/Ng and is thus
an order of magnitude larger than that in cosmic shear. (2)
The signal of cosmic magnification is generally much smaller
than intrinsic clustering of galaxies. Without precise redshift
measurement of galaxies or quasars, the only method to re-
move intrinsic clustering of galaxies is to measure the cross
correlation of foreground galaxies and background galaxies
(or quasars). But its detection is severely limited by the
number of high redshift galaxies, which are difficult to de-
tect in optical band, and quasars, which are rare, comparing
to galaxy abundance. Early measurements of cosmic magni-
fication were often controversial. Even with relatively large
sample of quasars and foreground galaxies from 2dF and

SDSS, the measurement of cosmic magnification is still at
its infancy and the detection of cosmic magnification has
only been confirmed at the several sigma level.

Besides the observational difficulty, the theoretical pre-
diction of cross correlation strength is complicated by fore-
ground galaxy bias, which is hard to predict from first prin-
ciples. Without precise understanding of the galaxy bias,
the power of cosmic magnification to constraining cosmol-
ogy and matter distribution is severely limited, compared to
cosmic shear.

As we will show in §2, upcoming radio surveys such as
Square Kilometer Array (SKA)6 can find ∼ 108-109 HI-rich
galaxies in total and ∼ 107 galaxies at z > 2 through the
neutral hydrogen 21cm hyperfine transition line. With this
large sample of galaxies, the measurement of cosmic mag-
nification will enter the precision era. Cosmic magnification
measured in this way is free of many obstacles entangled
in the cosmic shear measurement and quasar-galaxy cos-
mic magnification measurement. (1) Radio observations are
free of extinction. Since dust is associated with galaxies, ex-
tinction is correlated with foreground galaxies and thus is
likely able to produce a false quasar-galaxy or galaxy-galaxy
cross correlation signal. (2) Contrary to optical surveys, red-
shifts of these galaxies can be precisely determined by the
redshifted wavelength of the 21cm hyperfine transition line,
with no added observational cost. Precision measurement
of galaxy redshift is required for the precision prediction
of lensing statistics. It also allows the luxury of removing
close galaxy pairs, which is crucial to measure cosmic mag-
nification in the presence of the strong auto correlation of
galaxies. (3) At high redshift the magnification effect is en-
hanced, since galaxies at higher redshifts are more strongly
lensed and have a steeper flux distribution. Combined with
the large sample of galaxies, shot noise can be overcome.
(4) The auto correlation function of cosmic magnification
can be measured to high accuracy. The prediction of the
cosmic magnification auto correlation is free of galaxy bias
prior and as robust as the prediction of cosmic shear power
spectrum.

Throughout this paper, we adopt a flat ΛCDM uni-
verse with Ωm = 0.3, ΩΛ = 1 − Ωm, σ8 = 0.9, h = 0.7
and initial power index n = 1, as is consistent with WMAP
result (Spergel et al. 2003). We take Canadian Large Adap-
tive Reflector (CLAR)7 and SKA as our targets to forecast
the ability of future radio 21cm surveys to measure cosmic
magnification. The instrumental parameters and survey pat-
terns of these two surveys have not been completely fixed
yet. For CLAR, we adopt a system temperature Tsys = 30
K, effective collecting area Aeff = 5 × 104 m2 and field of
view 1 deg2. For SKA, we adopt the same value of Tsys and
field of view and adopt Aeff = 6 × 105 m2.

2 DETECTING GALAXIES IN RADIO

SURVEYS

Though the universe is highly ionized, there are still large
amount of neutral gas present in galaxies. The typical HI

6 http://www.skatelescope.org/
7 http://www.clar.ca/
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mass is around ∼ 109M⊙ (Zwaan et al. 1997). HI rich galax-
ies appear in the radio band by emitting the 21 cm hyperfine
line resulting from the transition of atomic hydrogens from
spin 1 state to spin zero state. The spontaneous transition
rate is A21 = 2.85 × 10−15s−1.

Each emission line has negligible width. But since neu-
tral gas has rotational and thermal motions, the integrated
intrinsic line width is not negligible. It turns out that the line
width of 21 cm emission is mainly determined by the rota-
tion of HI gas, which has a typical velocity ∼ 100 km/s. The
Doppler effect by thermal motions cause a velocity width
w ∼ c

√

kBT/mH . 10
√

T/104K km/s. The actual emis-
sion line width is determined by many parameters, such as
the total mass of galaxies, redshift and inclination angle of
the HI disk. For simplicity, we assume that the combined
intrinsic line width is w = 100 km/s. The choice of w affects
the prediction of detection efficiency of HI emitting galaxies.
But the results shown in this paper should not be changed
significantly by more realistic choice of w.

Since the velocity (frequency) resolution of radio sur-
veys can be much higher than the intrinsic line width, the ob-
served flux could have a nontrivial dependence on the band-
width, whose modeling requires detailed description of HI
distribution in galaxies. To avoid this complexity, we adopt
bandwidth to be larger or equal to redshifted 21cm line
width, which changes from w at z to w/(1 + z) at z = 0, or
in frequency space, to ∆ν = wν21/c(1 + z), where ν21 = 1.4
Ghz is the 21cm frequency. The total 21 cm flux of HI rich
galaxies is

S21 =
g2A21

g1 + g2

NHIE21

4πD2
L(z)

(
w

c

ν21

1 + z
)−1 (1)

= 0.023mJy
MHI

1010M⊙
(
c/H0

χ(z)
)2

100km/s

w(1 + z)
.

Here, g1 = 1 and g2 = 3 are the degeneracies of atomic
hydrogen spin 0 and 1 state. E21 = hν21 is the energy of
each 21cm photon. NHI = MHI/mHI is the total number
of neutral hydrogen of a galaxy with total hydrogen mass
MHI. DL(z) = χ(z)(1 + z) is the luminosity distance and χ
is the comoving angular distance. H0 = 100h km/s/Mpc is
the Hubble constant at present time.

Instrumental noise scales as ∆ν−1/2, where ∆ν is the
bandwidth. So a larger bandwith helps to beat down instru-
mental noise. But if the bandwidth is larger than the 21 cm
line width, the signal is diluted and scales as 1/∆ν. Thus,
the highest signal to noise ratio is gained when the band-
width ∆ν is equal to the redshiftd bandwidth of integrated
21cm emission line, wν21/c(1 + z). The system noise per
beam is

Ssys =

√
2Tsys

ηcAeff

kB√
∆νt

(2)

≃ 0.032mJy
Tsys

30K

5 × 104m2

Aeff

(
100km/s

w/(1 + z)

hour

t
)1/2 .

Here, ηc is the correlator efficiency, which is adopted as
ηc = 0.9. The instrumental beam area is Ab ∼ λ2/Aeff .

For CLAR, Ab ≃ 10
′2(ν21/ν)2. For SKA, Ab ≃ 1

′2(ν21/ν)2.

21cm emitting regions have typical size ∼ 30 kpc/h or ∼ 1
′′

at z ∼ 1. Thus, the size of 21cm emitting regions is much
smaller than the beam size. The observed flux is thus the

Figure 1. The predicted abundance of 21cm emitting galaxies
above 4σ detection threshold of CLAR 5 year survey. The solid
lines are the cumulative number distribution N(< z) and the
dashed lines are the differential distribution dN/dz. The total
number of observed galaxies is of the order 106 and the number
of galaxies at z > 1 is of the order 105. We assume no evolution
in the mass function. If realistic evolution model is considered,
the total number of galaxies at z > 1 can increase by a factor of
5 or more.

total flux of each galaxies. In this case, the calculation of
the detection threshold is straightforward.

If we choose those peaks with flux above nSsys (n-σ se-
lection threshold), the minimum HI mass in order for galax-
ies to be selected is

MHI,min = n × 1.39 × 1010M⊙
(

χ(z)

c/H0

)2

(1 + z)3/2

×
√

w

100km/s

hour

t

Tsys

30K

5 × 104m2

Aeff

. (3)

We assume that the HI mass function follows the
Schechter function found at z = 0 (Zwaan et al. 1997)

n(M, z)dM = n0(z)

(

M

M∗(z)

)

−γ

exp

(

− M

M∗(z)

)

dM . (4)

We fix γ = 1.2. Zwaan et al. (1997) found that M∗(z =
0) = 109.55h−2M⊙ and n0(z = 0) = 0.014h3Mpc−3. There
is little solid measurement of n0(z) and M∗(z) other than
at local universe. But for this form of the mass function,
there exists a tight relation between ΩHI, the cosmological
neutral hydrogen density with respect to the present day
critical density, and n0M∗:

ΩHIh = 2.1 × 10−4 n0(z)

n0(z = 0)

M∗(z)

M∗(z = 0)
. (5)

Observations of damped Lyman-α systems and Lyman-
α limit systems measure ΩHI from z = 0 to z ∼ 4. Com-
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bining Eq. 5 and these observations, one can put con-
straints on n0 and M∗. These observations found that
ΩHI increases by a factor of 5 toward z ∼ 3 and
then decreases toward higher redshift (Zwaan et al. (1997);
Rao & Turnshek (2000); Storrie-Lombardi & Wolfe (2000);
Péroux et al. (2003) and data compilation in Péroux et al.
(2003); Nagamine et al. (2004)). Either the increase of n0

or M∗ increases the detectability of 21cm emitting galax-
ies. Thus, estimations based on the assumption of no evo-
lution should be regarded as conservative results. We will
show that even in this conservative case, future radio sur-
veys such as CLAR and SKA still allow precise measurement
of galaxy-galaxy lensing (§3) and in the case of SKA, the
precise measurement of galaxy auto correlation induced by
cosmic magnification (§4) and lensing bispectrum (§5). If we
adopt evolution models implied by and consistent with ob-
servations, even CLAR is able to measure the galaxy lensing
auto correlation (§6).

The number of galaxies detected depends on the se-
lection threshold n. If we choose 4σ detection threshold
(n = 4), CLAR could detect ∼ 106-107 galaxies in a 5-year
survey. A deeper survey (smaller sky coverage) detects a
larger fraction of high redshift galaxies. But since the survey
volume is smaller, the total number of high redshift galaxies
is not necessarily higher. A survey area around 100 deg2 is
optimal to detect high z galaxies. For a 160 deg2 survey area,
∼ 106 galaxies at z > 1 can be detected. SKA is about 10
times more sensitive than CLAR and can detect two orders
of magnitude more galaxies. For a 1600 deg2 survey area,
∼ 108 galaxies at z > 1 and ∼ 107 galaxies at z > 2 can
be detected. As a reminder, these estimations are extremely
conservative. The number of galaxies detected at z > 1 can
be enhanced by a factor of 5 or more if the evolution effect
is considered.

Some peaks above the selection threshold are caused by
noise. Nnoise, the number of false peaks, has strong depen-
dence on the detection threshold. If we choose n = 1( 1σ
detection), the number of false peaks of noise is

Nnoise ∼ 4πfsky

Apixel

ν

∆v

Erfc(1.0/
√

2)

2
. 1010fsky

1
′2

Ab
. (6)

For CLAR deep surveys which cover fsky ∼ 1% of the sky,
Nnoise . 107, which is still less the number of detected
galaxies above 1σ threshold. For SKA with several thousand
square degree sky coverage, Nnoise above 1σ is ∼ 108, which
is slightly less than the total number of galaxies above 1σ
threshold. In CMB measurements, signal-to-noise per pixel
is often chosen to be 1, which maximizes return on the power
spectrum measurement. This would correspond to a detec-
tion threshold for which the false-positive rate is 50%. In
this sense, we can choose n = 1 as our selection threshold.
The selection threshold problem can be dealt with in a more
sophisticated way. The survey measures a three-dimensional
map of the sky. Each pixel in that map will have some signif-
icance of detection. Clearly the large number of low signifi-
cance pixels do collectively contain information, if they can
be averaged in a meaningful way. Zhang & Pen (2005) de-
scribe one such algorithm to extract the luminosity function
deep into the noise.

With these large samples of galaxies, the galaxy
clustering can be precisely measured. This allows the
constrain of cosmology through the baryon oscillation

Figure 2. Similiar as Fig. 1, but for SKA 5 year survey. The total
number of observed galaxies is of the order 108 and the number
of galaxies at z > 1 is of the order 107. We assume no evolution
in the mass function. If a realistic evolution model is considered,
the total number of galaxies at z > 1 can increase by a factor of
5 or more.

(Abdalla & Rawlings 2004). The redshift distortion of galax-
ies allows the measurement of galaxy velocity power spec-
trum to high accuracy8. In this paper we do not attempt to
utilize all information of these galaxies. Our primary goal
is to demonstrate the feasibility of using future 21cm radio
survey to do precision lensing measurement. We notice that
the properties of lensing magnification depends strongly on
the mass threshold or equivalently n. We will explore differ-
ent n > 1 to find suitable choice for different quantities. For
n & 3, since the number of false peaks is much smaller than
the number of detected galaxies, one can safely neglect all
errors caused by false detections. But for n . 3, one has to
take the errors caused by false peaks into account.

3 CROSS CORRELATIONS OF DIFFERENT

REDSHIFT BINS

3.1 Cosmic magnification preliminary

Gravitational lensing magnification changes the apparent
surface density of galaxies and correlates galaxy distribu-
tion at two different redshifts. At each direction of the sky,
lensing magnification increases the surface area by a factor of
µ = 1/[(1−κ)2 −γ2] and thus decreases galaxy surface den-
sity by a factor µ. Here, κ and γ are the lensing convergence
and shear respectively. On the other hand, lensing magnifi-
cation increases the flux of each galaxy by a factor of µ. If
the original distribution of galaxy flux is f(> F ), which is

8 Zhang& Pen, 2005, in preparation
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Figure 3. α−1 for different sky coverage and selection threshold.
From top to bottom, 10, 6, 5, 4 and 3-σ. As a reminder, −α is
the slope of galaxy cumulative luminosity (or mass) distribution
function at the selection threshold. α−1 determines the strength
of cosmic magnification. Deeper surveys probes fainter end of the
galaxy luminosity function, where the slope is shallower.

the fraction of galaxies above flux F , then the lensed galaxy
density δL

g at this direction is given by

1 + δL
g =

f(> Fc/µ)

f(> Fc)
(1 + δg)µ

−1 . (7)

Here Fc is the flux limit and δg is the unlensed galaxy over-
density. Since we work at weak lensing regime, one can Tay-
lor expand f(> F ) at Fc and obtain f(> Fc/µ) = f(>

Fc)[1 + 2ακ + O(κ2)]. Here, α ≡ −f
′

(> Fc)Fc/f(Fc). Then
we obtain

δL
g = δg + 2(α − 1)κ + O(κ2) . (8)

We neglect all high order terms throughout this paper.
These terms increase the lensing signal (Ménard et al.
2003a) and thus the accuracy of correlation measurement
estimated in the paper should be regarded as conservative.

α is effectively an observable. The lensed fL(> F ) is
related to the unlensed f(> F ) by

fL(> F ) =

∫

f(>
F

µ
)P (µ)dµ (9)

= f(> F ) + (4f
′

F + 2f
′′

F 2)〈κ2〉 + O(κ3) .

Here, P (µ) is the probability distribution function of µ.
Lensing can demagnify or magnify galaxies. To the first or-
der approximation, 〈u〉 = 2〈κ〉 = 0 and thus does not change
the averaged f(> F ). Even including higher order correc-
tions, since 〈κ2〉 . 10−3, fL(> F ) = f(> F ) is still an
excellent approximation. One can further iterate the above
expression to get a more accurate estimate of f(> F ). So, α
is a direct observable. Thus the prediction of the measured

Figure 4. Similar as Fig. 3, but for SKA.

correlations is completely determined by the clustering of
matter and galaxies. Such correlations are then powerful tool
to constrain cosmology.

To avoid being overwhelmed by the intrinsic corre-
lation of close galaxy pairs, we discuss two methods. In
this section, we discuss the usual method of cross corre-
lating galaxies in two redshift bins which do not overlap.
Galaxy peculiar velocity shifts the position of galaxies in
the redshift space by ∆z . 103km/s/c ≪ 1%. Galaxies
still correlate at scales r ∼ 100h−1Mpc, which corresponds
to ∆z ∼ 0.03[H(z)/H0][r/100h−1Mpc]. We choose redshift
bins separated by at least ∆z = 0.05. This choice allows us to
neglect any residual correlations caused by intrinsic galaxy
correlation. With accurate measurement of 21cm emitting
galaxy redshift, this can be done straightforwardly.

The distribution of foreground galaxies traces lenses of
background galaxies which cause the magnification effect.
Thus there exists a correlation between the background mag-
nification and foreground galaxies. This galaxy-galaxy cor-
relation is the correlation generally considered in the lit-
erature. There exists another correlation. Both foreground
galaxies and background galaxies are lensed by interven-
ing matter. Thus there exists the background magnification-
foreground magnification correlation. The combined corre-
lation is

〈δL
g (θf , zf )δL

g (θb, zb)〉 = 2(αb − 1)〈κbδ(θf , zf 〉 (10)

+ 4(αf − 1)(αb − 1)〈κfκb〉 .

Here the subscript f and b denote foreground and back-
ground respectively. The first term in the right side of the
equation is the magnification-galaxy correlation and the sec-
ond term is the magnification-magnification correlation.

The observed galaxy surface density is
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Σg =

∫ zmax

zmin

ng(z)(1 + δL)dz . (11)

Its correlation function is Eq. 10 weighted by the differ-
ential galaxy number distribution ng and clustering signal.
By Limber’s approximation, the corresponding 2D angular
power spectrum of the magnification-galaxy cross correla-
tion is given by

l2Cµg
l

2π
=

3ΩmH2
0

2c2
N−1

f

π

l
(12)

×
∫ zf,max

zf,min

∆2
gm(

l

χf
, zf )Gb(zf )ng(zf )χfdzf .

Here, Ωm is the present day matter density with respect
to the cosmological critical density. Nf =

∫

ng(zf )dzf is
the total number of foreground galaxies. ∆2

gm = bgrg∆
2
m

is the galaxy-matter cross correlation power spectrum. We
assume bgrg = 1 (bg is the galaxy bias and rg is the cross
correlation coefficient between galaxies and dark matter).
The matter power spectrum ∆2

m is calculated using the
BBKS transfer function (Bardeen et al. 1986) and its nonlin-
ear evolution is calculated by Peacock-Dodds fitting formula
(Peacock & Dodds 1996).

Gb, the kernel of the background magnification effect,
is given by

Gb(z) =
1 + z

Nb

∫ zb,max

zb,min

w(χ, χb)ng(zb)2(α(zb) − 1)dzb . (13)

Here, w(χ, χs) is the lensing geometry function. For the flat
universe we adopt, the geometry function is simplified to
w(χ, χs) = χ(1 − χ/χs). The strength of the magnification
effect relies on both the strength of lensing, which prefer
background galaxies with higher z, and α− 1, which prefers
deeper slope of the mass function at the mass threshold.

The power spectrum of the corresponding
magnification-magnification cross correlation is:

l2Cµµ
l

2π
=

(

3ΩmH2
0

2c2

)2
π

l
(14)

×
∫ zf,max

0

∆2
m(

l

χ
, z)Gb(z)Gf (z)χdχ .

Here, Gf , the kernel of foreground magnification effect, is
given by

Gf (z) =
1 + z

Nf

∫ zf,max

zf,min

w(χ, χf )ng(zf )2(α(zf ) − 1)dzf (15)

where Nf is the total number of foreground galaxies. ∆2
m is

the matter power spectrum. The amplitude of Cµµ relies on
both the lensing signal of foreground and background galax-
ies. The higher the zf and zb, the stronger the correlation
signal. It also depends strongly on αf − 1 and αb − 1. If the
mass threshold is larger, α − 1 is generally larger.

Depending on the choice of foreground bins and fore-
ground galaxy selection criteria (which determines α and
thus the strength of magnification effect), either Cµg or Cµµ

can dominate. In §3.2, we discuss the case where Cµg domi-
nates and in §3.3, we discuss the case where Cµµ dominates.

0.0001

0.001

0.01

0.1

l

1000
0.1

1

Figure 5. The predicted accuracy of cosmic magnification-galaxy
cross correlation power spectrum Cµg measured by CLAR 5 year
survey. Foreground galaxies (0.5 < zf < 1.0) are selected with
a 2σ selection threshold. Too small sky coverage (deep survey)
results in large cosmic variance, few high z galaxies (Fig. 1) and
smaller α − 1 (Fig. 3). Thus statistical error is large at all scales.
Too large sky coverage (shallow survey) results in smaller cos-
mic variance but also results in too few high z galaxies, which
causes large shot noise at small scales. The optimal survey cov-
erage is around several hundred square degrees. For such config-
uration, Cµg can be measured to ∼ 20% accuracy at l around
several thousand (lower panel, bin size ∆l = 0.2l). In top panel,
we further split background galaxies into several redshift bins.
This lensing tomography allows the measure of the evolution of
matter distribution. It also allows the measure of relative change
of the comoving distance as a function of z to better than 10% in
three redshift bins at zb > 1.

3.2 Magnification-galaxy power spectrum

For a sufficiently wide foreground galaxy redshift distribu-
tion with low median redshift, the lensing effect and the
magnification (α − 1) effect are both small. Generally, in
this case, Cµµ

l is much smaller than Cµg
l . In this section, we

fix the foreground galaxy distribution (0 < zf < 1.0) and
vary the background galaxy redshift distribution. For this
choice of foreground galaxy distribution, Cµµ is ∼ 1% of
Cµg (Fig. 6). The correlation signal peaks at l ≃ 104, where
the fluctuation is ∼ 10%.

Cµg
l is the projection of ∆2

gm along the line of sight (Eq.
12). Given a cosmology, ∆2

gm(k, z) can be extracted using
the inversion methods applied to galaxy surveys and lens-
ing surveys (e.g. Dodelson et al. (2002); Pen et al. (2003b)).
∆2

gm(k, z) contains valuable information of galaxy clustering
and can put strong constraint on halo occupation distribu-
tion.

Cosmological information is also carried in the geometry
term of lensing, in our case, χ in Cµg and Cµµ. By fixing the
foreground galaxy distribution and varying the background
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Figure 6. Similar as Fig. 5, but for SKA 5 year survey. Fore-
ground galaxies are chosen to be at 0.7 < zf < 1.0. To measure
Cµg, optimal sky coverage should be around ten thousand de-
grees. Under such configuration, Cµg can be measured to several
percent accuracy at 1000 . l . 104. The dashed line in the lower
panel is Cµµ/Cµg for 6400 deg2 sky coverage. The dependence of
comoving distance χ(z) on redshift can be measured to be better
than 1% in 7 redshift bins at z > 1.

galaxy distribution, one can isolate χb from ∆2
gm and mea-

sure the dependence of χb on zb. This method allows an
independent and robust constrain on cosmology (Jain et al.
2003; Zhang et al. 2003).

At frequencies below 1.4 Ghz, radio sources have
smooth continuum spectra, so they can be subtracted away
in the frequency space (Wang et al. 2005). Their only effect
is to contribute to Tsys and cause a fluctuation in Tsys across
the sky. This can introduce a false correlation, but it is rou-
tine in observation to eliminate this effect and thus we do
not consider it in this paper.

In this section, we quantify statistical errors in Cµg mea-
surement. The statistical error in the Cµg measurement is

∆Cµg
l =

√

2

(2l + 1)∆lfsky

(Cb
g + Cb

shot)(C
f
g + Cf

shot) . (16)

Here, Cb
g is the auto correlation power spectrum of the back-

ground galaxies, which includes contributions from 〈δb
gδb

g〉,
〈κbκb〉 and 〈δb

gκb〉. For high redshift background galaxies,
〈κbκb〉 is not negligible comparing to the intrinsic galaxy
correlation 〈δb

gδb
g〉 and thus has to be taken into account.

Cb
shot = 4πfsky[1 + Nb

noise/Nb]/Nb is the background shot
noise power spectrum. The extra factor 1 + Nb

noise/Nb ac-
counts for the contaminations of false peaks in the selected
background sample. These false peaks does not correlate
with each other, so their only effect is to increase the shot
noise. For selection thresholds above 2-σ, false positive rate
is small and this extra factor can be neglected. Cb

f is the
auto correlation power spectrum of the foreground galaxies.

The S/N depends strongly on the relative location of
foreground galaxies and background galaxies. If foreground
galaxies locate far away from the redshift range where the
dominant lensing signal of background galaxies comes from,
these galaxies do not contribute to Cµg and only contribute
to noise Cf

g . To have large lensing signal, background galax-
ies must locate at high redshift zb & 1. The lensing signal
mainly comes from z & 0.5 redshift range. The contribution
of foreground galaxies at zf . 0.5 to cross correlation signal
Cµg is small. But these galaxies are strongly clustered and
cause large statistical error to Cµg . To achieve good S/N,
it is better to disregard these galaxies. In the measurement
of quasar-galaxy cross correlation using optical surveys (e.g.
Myers et al. (2003); Scranton et al. (2005)), quasars lie at
z & 1 while most galaxies locate at z . 0.5. This results in

Cµg ≪
√

Cb
gCf

g . This maybe the dominant reason that the
measured cross correlations by 2dF and SDSS (Myers et al.
2003; Scranton et al. 2005) do not have as good S/N as one
would expecte from their large galaxy and quasar samples.
It is difficult for optical surveys to detect large number of
high z galaxies. But radio surveys can. We then have the lux-
ury to disregard zf . 0.5 galaxies and only select zf & 0.5
galaxies as foreground galaxies. By this choice, the cross cor-
relation signal is boosted, as discussed above. In the mean-
while, the noise term Cf

g is reduced since clustering of galax-
ies at higher z is weaker. CLAR will detect ∼ 106 galaxies
between 0.5 < zf < 1.0 and ∼ 105 galaxies at zb > 1.5.
These foreground and background samples are smaller than
corresponding SDSS samples (Scranton et al. 2005), but the
predicted accuracy of cross correlation measurement can be
much better (fig. 5).

Statistical errors also strongly depend on fsky. This de-
pendence is complicated. (1) fsky affects α(zf ). Shorter in-
tegration time per unit area is required in order to survey
for a larger sky area. This increases system noise per beam
and thus increases the selection mass threshold of high z
galaxies. Since the mass function is steeper at higher mass,
α(zf ) increases (Fig. 3 & 4) and Cµg increases. (2) fsky af-
fects the relative distribution of galaxies. Larger fsky survey
detects relatively more low z galaxies. Since Cµg

l is propor-
tional to ∆2

gm weighted by the distribution of foreground
galaxies and matter clustering is stronger at lower z, larger
sky coverage tends to increase Cµg . But on the other hand,
the lensing effect is smaller for lower z galaxies. This has the
effect to decrease w(χ, χb) and thus decrease Cµg . Furher-
more, the noise terms Cb

g and Cf
g increase. (3) fsky affects

the cosmic variance. (4) fsky affects the total number of
foreground and background galaxies and thus changes the
shot noise. The lower panels of fig. 5 & 6 show the depen-
dence of ∆Cµg/∆Cµg on sky coverage. If the sky coverage
is too small, the cosmic variance is large. If the sky coverage
is too large, too few background galaxies can be detected.
Shot noise begins to dominate at relatively large scales. The
choice of selection threshold n (n-σ) also affects the statisti-
cal errors. Larger n increases α and thus increases Cµg . But
it also decreases the number of detected galaxies and thus
increases shot noise.

Both CLAR and SKA can measure Cµg precisely (fig.
5 & 6). For CLAR, the optimal sky coverage is around sev-
eral hundred square degree. Cµg can be measured to ∼ 20%
accuracy for bin size ∆l = 0.2l. It can also measure Cµg at
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Figure 7. The predicted accuracy of Cµµ
l

, magnification-
Magnification cross correlation power spectrum in two redshift
bins, by SKA 5 year surveys. The measurement of Cµµ

l
allows

constraining cosmology and studying matter clustering without
the complexity of galaxy bias. We choose foreground galaxies at
1.6 6 zf 6 2.0 and background galaxies at 2.0 6 zb 6 4.0.
We treat Cµg

l
as contaminations. Since Cµµ depends on α − 1

of foreground galaxies while Cµg does not, we vary the selec-
tion threshold of foreground galaxies to change Cµµ/Cµg . We
fix the selection threshold of background galaxies as 4σ. For 6σ
and 10σ selection threshold of foreground, galaxies, systematic er-
rors (Cµg) is comparable to statistical errors (error-bars of data
points).

several redshift bins and allows isolating geometry. For SKA,
the optimal sky coverage is around ten thousand squre de-
gree. Cµg can be measured to ∼ % accuracy. The size of
background redshift bins can be as narrow than ∆z . 0.1.
The change of χb(z) can be precisely measured at z & 1.

3.3 Magnification-Magnification power spectrum

The main strength of the cosmic shear power spectrum and
bispectrum to constrain cosmology lies in the fact that the
prediction of these quantities only relies on the matter clus-
tering whose theoretical understanding is robust. The pre-
diction of Cµµ is as straightforward as the prediction of the
cosmic shear power spectrum, which does not require the
knowledge of complicated galaxy bias, as Cµg does. So, the
measurement of Cµµ would allow robust constrain on cos-
mological parameters and dark matter clustering, as cosmic
shear power spectrum does. In this section, we will show that
the magnification (foreground)-magnification (background)
cross correlation power spectrum Cµµ is straightforward to
measure by SKA.

For the purpose of constraining cosmology using Cµµ,
Cµg should be treated as contamination and marginalized
over. Cµµ

l depends on the magnification strength of fore-

Figure 8. Auto correlation angular power spectrum of galaxies.
We disregard close pairs within redshift separation ∆z < 0.1 and
thus eliminate intrinsic galaxy clustering. We try different galaxy
distribution. Lines with error bars, from bottom to top, corre-
spond to z > 1.5, z > 2.0, and z > 2.5, respectively. For our
choice of 4σ selection threshold and z > 1.5, Cµµ dominates over
Cµg. For higher redshift, the luminosity function is steeper at the

limiting flux. Larger α − 1 then increases Cµµ with respect to
Cµg. On the other hand, high redshift galaxies are mainly lensed
by low z matter distribution. The higher the redshift, the less
likely that galaxies can be lensed by matter distribution in the
same redshift bins. This also increase Cµµ with respect to Cµg .
We assume no evolution in the HI mass function. Realistic evolu-
tion scenarios would result in more galaxies and thus allow better
measurement.

ground galaxies, while Cµg
l does not. By increasing the red-

shifts of foreground galaxies, the lensing signal increases and
α − 1 also increases, due to higher mass selection threshold
at higher redshift, thus Cµµ

l increases with respect to Cµg
l .

Since Cµg is proportional to the strength of matter clus-
tering, it decreases when increasing redshifts of foreground
galaxies. But these requirements to increase Cµµ with re-
spect to Cµg can be at odds with the requirement to reduce
statistical errors. For example, increasing the mass selection
threshold or redshifts of foreground galaxies reduces Nf and
thus increases shot noise.

We try different foreground redshift bins, selection
threshold and sky coverage to optimize the measurement
of Cµµ such that Cµg/Cµµ is smaller or comparable to the
statistical error. For SKA, it is indeed possible to measure
Cµµ and control both systematic errors (Cµg and statistical
errors to 10% level (Fig. 7).

4 AUTO CORRELATION

With the precision measurement of galaxy redshift and large
amount of high z galaxies, one can extract the cosmic mag-
nification from the galaxy auto correlation measurement. In
the correlation estimator, we throw away pairs with redshift
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separation |z1−z2| 6 ∆zc. We choose ∆zc = 0.1, which cor-
responds to comoving separation rc ≃ 180h−1Mpc at z = 1
and rc ≃ 100h−1Mpc at z = 2. In Fourier space, this cor-
responds to cut off the power at kc . 1/rc . 0.01h/Mpc.
Applying the Limber’s equation in Fourier space, the angu-
lar fluctuation at multipole l is contributed by the spacial
fluctuation at k = l/χ. Then an effective cut off kc in Fourier
space corresponds to an effective cutoff at lc = kcχ . 20.
So, under the Limber’s approximation, one can neglect the
residual intrinsic correlation of galaxies at l & 20.

One can further quantify the residual intrinsic cluster-
ing. The angular correlation it produces is

wc
IC(θ) = 2

∫ zmax

zmin

n2
g(z)

dz

dχ/dz
(17)

×
∫

∞

rc

ξg(
√

χ2θ2 + (∆χ)2, z)d∆χ .

Here, ξg is the galaxy correlation function. Numerical calcu-
lation shows that |wc

IC(θ)| is smaller than 10−5 at all scales.

For example, |wc
IC(∼ 1

′

)| is less than ∼ 10−5 and |wc
IC(∼ 1◦)|

is less than several×10−7. One can further convert wc
IC(θ) to

the corresponding Cl. We find that |l2Cl/(2π)| . 10−5 at all
scales. Specifically, at l ∼ 100, |l2Cl/(2π)| . several × 10−6

and at l ∼ 1000, |l2Cl/(2π)| . several × 10−6. The angular
fluctuation caused by residual galaxy intrinsic clustering is
roughly 1% of Cµµ at l ∼ 100 and much less than 1% at
smaller scales. So, the close pair removal procedure effec-
tively eliminates all intrinsic galaxy clustering.

The auto correlation function is composed of two parts,
the one arising from the auto correlation of cosmic mag-
nification and the one from the cross correlation between
cosmic magnification and δg. The magnification auto corre-
lation power spectrum is

l2Cµµ
l

2π
=

(

3ΩmH2
0

2c2

)2
π

l

∫ zmax

0

∆2
m(

l

χ
, z)G(z)2f2

2 (z)χdχ(18)

where N is the total number of galaxies in the corresponding
redshift bin. This expression differs from Eq. 14 only by a
factor f2

2 (z), which arises from the close pair removal. f2(z)
is given by

f2
2 (z) = [

(1 + z)

NG(z)
]2

∫

4w(χ, χ1)(α1 − 1)w(χ, χ2)(α2 − 1)

× ng(z1)ng(z2)Θ(|z1 − z2| − ∆zc)dz1dz2 . (19)

The function Θ(x) = 0 if x < 0 and Θ(x) = 1 if x > 0. G(z)
is defined analogous to Gb and Gf .

The power spectrum of the magnification-galaxy cross
correlation function is

l2Cµg
l

2π
=

3ΩmH2
0

2c2
N−1 π

l

∫ zmax

zmin

(20)

× ∆2
gm(

l

χ(z)
, z)G(z)f1(z)ng(z)χ(z)dz .

The effect of close pair removal is carried by f1(z)

f1(z) =
1 + z

NG(z)

∫ zmax

zmin

w(χ,χb) (21)

× ng(zb)(α(zb) − 1)Θ(|zb − z| − ∆zc)dzb .

The prediction of Cµµ is straightforward, but the pre-
diction of Cµg involves galaxy bias, which can not be mod-

l

1000

l

1000

Figure 9. Forecasted measurement of bispectrum by SKA. We
assume no evolution in the HI mass function. The solid lines are
Bµµµ of equilateral configuration (l1 = l2 = l3), the dot lines are
Bµµg and the dash lines are the statistical error. For statistical
error, we adopt the l bin size ∆l = 0.2l and the angular bin
size 10◦. We try different galaxy redshift ranges and selection
thresholds. The bottom left, bottom right, top left and top right
panels are the results of (3σ, z > 1.0), (5σ, z > 1.0), (3σ, z > 1.5)
and (5σ, z > 1.5), respectively.

eled from first principles. For the purpose of constraining
cosmology and large scale structure, we treat Cµg as con-
taminations of Cµµ. For the SKA, both the statistical errors
of Cµµ and systematics errors (Cµg) can be controlled to
better than 10% level (Fig. 8). For CLAR, the detectabil-
ity of Cµµ is sensitive to the evolution of HI mass function.
Assuming the conservative no evolution model, Cµµ can be
detected at the several σ level(fig. 10).

5 COSMIC MAGNIFICATION BISPECTRUM

Higher order statistics such as bispectrum and skew-
ness contain valuable and often complimentary informa-
tion on cosmology and the large scale structure, compar-
ing to the 2-point correlation function and power spec-
trum (Bernardeau et al. 1997; Hui 1999; Bernardeau et al.
2002; Ménard et al. 2003b; Pen et al. 2003a; Takada & Jain
2004). Large samples of 21cm emitting galaxies and precision
measurement of galaxy redshift allow accurate measurement
of these high order statistics. In this section, we focus on the
bispectrum of galaxies in the same redshift bins. We throw
away close pairs with |zi − zj | < 0.1 where zi (i = 1, 2, 3) is
the redshift of each galaxies.

The bispectrum comes from four parts, 〈µµµ〉, 〈µµg〉,
〈µgg〉 and 〈ggg〉. The 〈µgg〉 and 〈ggg〉 terms are negligible
following similar argument as in the power spectrum case.
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The 〈µµµ〉 term contributes a bispectrum

Bµµµ(l1, l2, l3) =

(

3ΩmH2
0

2c2

)3 ∫ zmax

0

G3(z)f3
3 (z)χ−4

×Bδ(
l1
χ

,
l2
χ

,
l3
χ

; χ)dχ . (22)

Here, f3(z) takes the effect of close pair removal into
account. Bδ(k1, k2, k3; χ) is the matter density bispec-
trum, which is calculated adopting the fitting formula of
Scoccimarro & Couchman (2001).

The 〈µµg〉 term contributes another bispectrum

Bµµg(l1, l2, l3) = 3

(

3ΩmH2
0

2c2

)2 ∫ zmax

zmin

G2(z)f2
4 (z)χ−4

×bgBδ(
l1
χ

,
l2
χ

,
l3
χ

; χ)
ng(z)

N
dz . (23)

Here, f4(z) takes the effect of close pair removal into ac-
count. We explicitly show the galaxy bias bg in the above
equation, though we adopt bg = 1 in the estimation. The
factor 3 comes from the fact the contribution from 〈µ1µ2g3〉
is (statistically) equal to the contributions from 〈µ1g2µ3〉
and 〈g1µ2µ3〉.

The shot noise of the bispectrum is

Bshot(l1, l2, l3) = C2
N + CN(C1 + C2 + C3) . (24)

Here, CN = 4πfsky/N is the shot noise power spectrum.
Full evaluation of the sample variance of bispectrum involves
integrating 6-point nonlinear density correlation function.
Since we do not have robust theoretical predictions or simu-
lation results of 6-pt nonlinear correlation function, we only
consider the Gaussian sample variance. The statistical error
of corresponding bispectrum B123 is

∆B123 =

√

2

N123

(C1C2C3 + B2
shot

) . (25)

Here, Ci = Cµµ(li) + Cµg(li). N123 is the number of inde-
pendent combination of l1, l2, l3 used to obtain the averaged
B123. For a rectangle survey area with x axis size θx and y
axis size θy, independent modes are l = (2πm/θx, 2πn/θy),
where m, n = 0,±1,±2, · · ·. There is a constraint that
l3 = −l1 − l2, then the total number of independent combi-
nation is

N123 = dm1xdn1xdm2xdn2y (26)

=
(

θx

2π

θy

2π

)2

l1dl1l2dl22πdθ12

where θ12 is the angle between l1 and l2. We only show the
result of l1 ≃ l2 ≃ l3, for which, we choose ∆l = 0.2l and
∆θ12 = π/18 (10◦).

At large scales (l . 1000), cosmic variance prohibits
the measurement of Bµµµ and Bµµg . But at scales l ∼ 104,
either Bµµµ or Bµµg or both can be measured to be better
than 10% accuracy by SKA. The computation of a three
point function may appear computationally challenging, re-
quiring the enumeration of N3 triangles with N ∼ 108. Re-
cently, linear algorithms have been devised which resolve
these problems (Zhang & Pen 2003).

6 EVOLUTION EFFECT

We have demonstrated the feasibility of measuring lensing
power spectra and bispectrum in cross correlation of galaxies
in two redshift bins and in auto correlation of galaxies in the
same redshift bin. We caution on that these results (fig. 1, 2,
5,6,7 & 8,9) should be regarded as conservative estimation of
the power of radio surveys to measure cosmic magnification.
There are several reasons. One is that in this paper we only
use galaxies in certain redshift ranges and above certain se-
lection threshold. Better measurement of Cµµ and Cµg can
be obtained by cross correlating galaxies above 1σ detec-
tion threshold at all redshifts. To estimate how much can
one gain requires the design of careful weighting on different
redshifts and luminosity (HI mass). This work is beyond the
scope of this paper. Another reason is that we have assumed
no evolution in the HI mass function. Evolution effect is very
likely to improve the accuracy of lensing measurement by
providing many more detected galaxies. We will investigate
the evolution effect in this section.

As discussed in §2, the observed ΩHIh shows a factor
of 5 increase from z = 0 to z ∼ 3. Its evolution can be ap-
proximated as g(z) = (1 + z)2.9 exp(−z/1.3). Thus we have
a constraint of n0(z)M∗(z) = n0(z = 0)M∗(z = 0)g(z).
There is little solid constraint on the evolution of n0 or M∗

separately. But the observation of damped Lyman-α sys-
tems and Lyman-Limit systems provides some indirect con-
straints. Damped Lyman-α systems have HI column density
NHI > 2 × 1020 cm−2. If the size of the corresponding HI
regions is ∼ 30 kpc/h, then the total HI mass is ∼ 1010M⊙.
Thus these damped Lyman-α systems are likely part of cor-
responding massive HI (proto-)galaxies. On the other hand,
Lyman-Limit systems have much smaller HI column den-
sity and are likely part of less massive HI galaxies. The ra-
tio of damped Lyman-α systems abundance with respect to
Lyman-limit systems decreases after z = 3. This implies that
there may be fewer massive HI galaxies after z ∼ 3 and thus
an evolution of M∗(z).

Since the constraint to either n0 or M∗ is weak and it
is likely that both n0(z) and M∗(z) evolve, we explore three
evolution scenarios. (A) No evolution in M∗(z). n0(z) =
n0(z = 0)g(z). (B) No evolution in n0(z). M∗(z) = M∗(z =
0)g(z). (C). n0(z)/n0(z = 0) = M∗(z)/M∗(z = 0) = g(z)1/2.

The number of z > 1 galaxies increases by at least a
factor of 5 for these evolution scenarios. Taken the evolution
effect into account, even CLAR can measure Cµµ to ∼ 10%
accuracy (Fig. 10).

7 DISCUSSION

We further address that the results shown in this paper only
utilize a small fraction of cosmic magnification information
contained in 21cm emitting galaxy distribution. (1) We only
tried several bins of galaxy redshift distribution and sev-
eral galaxy selection threshold to demonstrate that cosmic
magnification can be measured to high accuracy. To utilize
the full lensing information, one needs to divide galaxies
into many redshift bins and selection threshold bins. One
then measures (N-point) auto correlation functions of each
bins and cross correlation functions between different bins.
In principle, one can develop optimal weighting scheme to
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Figure 10. Cµµ and Cµg that would be measured in the same
redshift bin by CLAR. We try different evolution models, as ex-
plained in §6. Top left panel assumes no evolution and we choose
galaxies selected above 2σ at z > 1.5. Other panels assume evo-
lution models explained in the text. Top right panel uses galaxies
above 3σ at z > 1.5. Bottom right panel uses galaxies above 2σ
at z > 2.0, Bottom left panel uses galaxies above 1σ atz > 2.5.

combine all measurements to get the best measurement of
lensing statistics and lensing-galaxy statistics. (2) We did
not attempt to separate the cosmic magnification auto cor-
relations and the cosmic magnification-galaxy correlations.
These two classes of correlation have different dependence
on the selection threshold of galaxies. These dependences
are straightforward to predict and can be applied to sepa-
rate two components. Such component separation improves
the robustness of constraining cosmology and large scale
structure significantly. The cosmic magnification auto cor-
relations and the geometry of cosmic magnification-galaxy
correlations (Jain et al. 2003; Zhang et al. 2003) are ideal to
constrain cosmology and matter clustering. The amplitude
and angular scale dependence cosmic magnification-galaxy
correlations are ideal to constrain halo occupation distri-
bution. Advanced analysis methods are required to address
the above two issues and to utilize full information of cosmic
magnification information in 21cm emitting galaxy distribu-
tion. (3) We note that individual galaxies can be resolved
with SKA, this allows the measurement of cosmic shear. It
may also allow an independent measure of cosmic magnifi-
cation. SKA resolution allows the measurement of an incli-
nation angle. If galaxies at high redshift also follow a Tully-
Fisher relation, the lensing effect can also be large compared
to shot noise and can be extracted. Since we do not know the
evolution of the scatter in the Tully-Fisher at high redshift,
we do not use this information in this paper. It is likely that
real surveys can do significantly better than our estimates.

Utilizing all information of cosmic magnification infor-
mation in 21cm emitting galaxy distribution, the relative er-

ror of cosmic magnification will be much smaller than what
shown in this paper. Upon this precision era, one needs to
improve the theoretical prediction to better than 1% accu-
racy and at the same time, understand possible 1% system-
atics.

Our prediction of cosmic magnification is simplified in
two ways. (1) We only considered the leading order term of
cosmic magnification (Eq. 8). Higher order terms are known
to be capable of generating 10% effect (e.g. (Ménard et al.
2003a)) and have to be included to interpret data at the
forecast accuracy. (2) For the lensing convergence, we ne-
glected high order corrections caused by lens-lens coupling
and deviation from Born’s approximation. These high or-
der corrections are known to have several percent effect
(Schneider et al. 1998; Dodelson & Zhang 2005) and should
be taken into account.

Source-lens coupling (Bernardeau 1998; Hamana 2001)
has been considered in the case of cosmic shear. It arises
from the fact that measured cosmic shear is always weighted
by the number of observed galaxies, which also trace the
matter distribution. But this effect does not exist in cosmic
magnification where we directly correlate the numbers of
observed galaxies at two different redshifts and directions.

Several other approximations in our cosmic magnifica-
tion measurement only introduce negligible corrections. (1)
we have assumed that the luminosity function f(> F ) is
the same everywhere and thus α is the same everywhere.
This picture is over simplified. f(> F ) can have environ-
mental dependence. Thus in principle 〈αα〉 6= 〈α〉2. This af-
fects the prediction of correlations where two or more cosmic
magnification terms present (e.g. in Cµ, Bµµµ and Bµµg).
But this effect is very small. since α only depends on lo-
cal environment, for two redshift bins with modest sepa-
ration ∆z & 0.05, 〈α1α2〉 ≃ 〈α1〉〈α2〉. The close pair re-
moval procedure further guarantees that even for the same
redshift bin, 〈α1α2〉 ≃ 〈α1〉〈α2〉. Thus, one can safely ne-
glect this effect. (2) Residual intrinsic clustering causes
∼ 1% correction at l ∼ 100 (§4)9. Since cosmic variance

at l ∼ 100 is & 0.01f
−1/2

sky . One needs to worry about this
effect only for full sky surveys. Furthermore, it can be re-
duced by extrapolating galaxy correlation function ξg at
smaller scales measured from the same survey to relevant
scales (& 100h−1Mpc).

8 CONCLUSIONS

We have made simple forecasts for future radio surveys to
measure gravitational lensing. We found that radio surveys
can be precise sources for lensing measurements, and that
lensing magnification is measurable because redshifts are
known and many galaxies can be detected. CLAR and SKA
are expected to measure the dark matter power spectrum
and galaxy-matter cross correlation to high accuracy. The
estimates are conservative, and many effects will increase
the sensitivity. Unfortunately, these effects, which include
Tully-Fisher relations, are difficult to quantify at high red-
shifts, for which we neglect in this paper.

More complete statistical information is available at

9 But it causes ≪ 1% correction at smaller scales.
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lower signal to noise levels and using non-Gaussian statis-
tics. We have made estimates of the three point statistics,
which appear promising, and are expected to improve the
information that can be gained by lensing.
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